Germ-Line Genetic Enhancement
and Rawlsian Primary Goods Fritz Allhoff Department of Philosophy, Western
Michigan University Journal
of Evolution and Technology - Vol. 18 http://jetpress.org/v18 First published in Kennedy
Institute of Ethics Journal 15(1) (March 2005) Abstract Genetic interventions raise a host of moral
issues and, of its various species, germ-line genetic enhancement is the most
morally contentious. This paper surveys various arguments against germ-line
enhancement and attempts to demonstrate their inadequacies. A positive argument
is advanced in favor of certain forms of germ-line enhancements, which holds
that they are morally permissible if and only if they augment Rawlsian primary
goods, either directly or by facilitating their acquisition. The moral permissibility of genetic intervention
in humans is met with considerable skepticism. Of all the interventions,
germ-line genetic enhancement is considered the most morally contentious. In
this paper, I argue for the moral permissibility of some forms of germ-line
genetic enhancement. I first consider several arguments against genetic
intervention more generally, all of which I think either can be rejected
outright or are only contingently valid given scientific limitations. I further
suggest that the latter class of arguments will become impotent as the relevant
technologies develop over time. I then present a positive argument in favor of
certain germ-line genetic enhancements, which holds that such interventions are
morally permissible if and only if they serve to augment Rawlsian primary
goods, either directly or by facilitating their acquisition. In
discussing human genetic intervention, it is helpful to acknowledge two common
distinctions. First, one can distinguish between somatic and germ-line cells.
Somatic cells, such as skin or muscle cells, contain 23 chromosomal pairs and
do not transmit genetic information to succeeding generations. Germ-line cells,
which are the egg and the sperm cells, contain 23 unpaired chromosomes and
provide genetic information to offspring, as well as to the future generations
descended from those offspring. Second, one can distinguish between genetic
therapy and genetic enhancement –
alternatively referred to as negative and positive genetic engineering,
respectively, although these expressions have become less fashionable. Genetic
therapy aims at the treatment or prevention of a disease, whereas genetic
enhancement aims at the enhancement of some capability or trait. Accepting
these distinctions, there are four categories of genetic intervention: somatic
cell gene therapy, somatic cell genetic enhancement, germ-line gene therapy,
and germ-line genetic enhancement.1 Presumably,
ethical enquiry could proceed independently for each of these categories.
Somatic cell intervention, which affects only the subject of the intervention,
is most likely less morally contentious than germ-line intervention, which will
affect all future generations (in the absence of any further interventions).
Germ-line intervention is consequently more extreme in scope and, furthermore,
will come to affect individuals who have not consented to the procedure. One
also might think that gene therapy is less morally contentious than genetic
enhancement. Various arguments have been advanced in favor of this position,
which include, but are not limited to: genetic enhancement is closer to
“playing God,” runs contrary to the goals of medicine, risks the priority of
love for genome over love for child, and so forth. Although these arguments are
of varying merit, it is at least worth observing that most of us feel that
curing Huntington’s chorea through germ-line gene therapy is less morally
problematic – and more morally incumbent –
than creating taller or faster children through genetic enhancement. I feel
that the strength of this intuition alone provides good reason to suspect that
genetic therapy is less morally contentious than genetic enhancement. Given
these two results, one might postulate the following order, from least morally
objectionable to most morally objectionable: somatic gene therapy, germ-line
gene therapy or somatic cell genetic enhancement, and germ-line genetic
enhancement. In the literature, the endorsement of these practices generally
has followed the expected pattern; somatic gene therapy is the least
contentious, germ-line genetic enhancement is the most contentious, and,
although there are substantial debates on the intermediate practices, it seems
most bioethicists, under appropriate conditions, ultimately would support both germ-line
gene therapy and somatic cell genetic enhancement. It
is worth noting that the therapy/enhancement – or,
alternatively, the positive/negative – distinction
can be challenged. For example, an individual might be depressed either by
virtue of some genetic defect, such as limited serotonin production, or because
she happens to have a difficult life – e.g., death
of several close relatives, loss of job, and the like. In the latter case, she
could be genetically “normal” and any genetic intervention would constitute
enhancement rather than therapy. However, in the former case, intervention
would constitute therapy. Insofar as the therapy/enhancement distinction is
supposed to be morally relevant, one might question it on the grounds that it
suggests that the same genetic intervention is deemed more morally appropriate
in one case than in the other. Certainly the depression could be qualitatively
identical for both women and each is entitled to relief; the
therapy/enhancement distinction focuses solely on the etiology of the
affliction and wholly ignores the degree of suffering. Furthermore, this
distinction inevitably leaves one with hard cases in which it is difficult to
ascertain whether a given intervention qualifies as a treatment or as an
enhancement.2 Nevertheless, I think it is safe to assume that
most bioethicists accept this distinction, although perhaps hesitantly or in a
qualified manner. In many, or even most, cases, one legitimately can view the
therapy/enhancement distinction as morally relevant, and, in most cases, it
will not be tremendously difficult to draw the line between what constitutes
therapy and what constitutes enhancement. When difficult cases do arise,
principles exist to help make the determinations. Norman Daniels, for example,
has argued for the use of “quasi-statistical concepts of ‘normality’ to argue
that any intervention designed to restore or preserve a species-typical level
of functioning for an individual should count as treatment, leaving only those
that would give individuals capabilities beyond the range of normal human
variation to fall outside the pale as enhancement” (see Juengst and Walters
2003, p. 579; also Daniels 1992). Alternatively, Eric Juengst (1997) has
proposed that therapies aim at pathologies that compromise health, whereas
enhancements aim at improvements that are not health-related. In most cases,
either proposal will help determine what would count as a treatment and what
would count as an enhancement. So, although the therapy/enhancement distinction
is not above discussion, I propose to accept it for the sake of this paper,
particularly because of its general intuitive resonance and its conceptual
appeal. Finally,
discussions of genetic intervention frequently begin – and
sometimes even end – with an evaluation of
scientific limitations. There is no doubt that genetic intervention is
currently in its nascent stages and, although some reasons exist to be
optimistic about its future, there still are tremendous obstacles that
must be overcome before it will be able to fulfill its potential promise. These
obstacles include, but probably are not limited to, our limited knowledge
regarding the human genome and the functioning of individual genes, our limited
knowledge of the optimal procedural techniques, and our inability to address –
or even conceive of – the inordinate economic
costs of both research and practice. These issues are so daunting that it has
been suggested that no “serious organized discussions” regarding genetic
intervention can even take place for several years to come (Neel 1993).3
Although
these issues obviously are critical to the ultimate success of genetic
intervention, I fail to see how they impugn upon enquiry into its moral dimension.
Furthermore, it is imperative that this moral dimension be investigated before
the scientific limitations are overcome. As we have recently seen in the
cloning debate, it is possible that the science can develop ahead of –
or independently of – a healthy moral
discourse.4 When this
happens, society is left to “catch up” from both a moral and a policy
standpoint; advance discussion could preclude this disadvantage and ensure the
appropriate readiness for scientific advance. Finally, in the case of genetic
intervention, it is certainly not the case that any dialogue will be
conceptually bankrupt or be wholly fruitless – we have a
good idea of the relevant issues, and we can get to work on those now. Arguments
against (germ-line) genetic enhancement Of
the four categories of genetic intervention introduced above, I think that it
is fairly clear that germ-line enhancement is the most morally contentious.
Certainly, there are those who would object to the other categories. However,
these objections often reflect theological concern, scientific limitations (see,
e.g., Danks 1994),5 or involved
risk (see, e.g., Anderson 1990).6 Insofar as we
live in an increasingly secular society, this first type of concern may be
partially allayed or marginalized. The second type of concern will abate in the
wake of scientific progress, which is bound to ensue; in the event that
scientific limitations do persist, this objection would remain valid, although
only contingently so. Finally, no rational proponent of genetic intervention
would propose that we move forward until the potential
benefits outweigh the potential risks, a development that one might
reasonably assume to be inevitable, even if distant. (In his classic book,
Jonathan Glover (1984, pp. 42-43) proposes a “principle of caution” that would
hold that “we should alter genes only where we have strong reasons for thinking
the risk of disaster is very small, and where the benefit is great enough to
justify the risk.” There might, of course, be epistemic issues but,
conceptually, this is, I think, right.) Although there have been other objections to
genetic intervention, I take these to be the three most common strains, and I
further take it to be the consensus among most bioethicists that somatic cell
interventions (both therapy and enhancement) as well as germ-line therapies
are, or could be, morally permissible. Somatic interventions can most obviously
be defended on the grounds of autonomy; so long as a rational, autonomous agent
consents to the alteration of his genome, there is at least a prima facie reason
to not preclude him from doing so. There might, of course, be other relevant
and countervailing issues – e.g., safety, fairness,
and the like – but, prima facie, somatic
interventions seem morally permissible. Germ-line gene therapy also seems to be
prima facie morally permissible. Consider, for example, Huntington’s
chorea, which results from a single defective gene. In this particular case,
the problem stems from a single gene – on
chromosome 4 – that issues excessive calls for
glutamine production, and deletion of an appropriate string of the gene would
wholly preclude this terrible affliction. In such cases, and presupposing safe
and effective procedures, it would be entirely unreasonable to deny the moral
legitimacy of the therapy. Even those who stand somewhat opposed to genetic
interventions would grant that “it would be cruel, if not stupid, to suggest
that we ought never to use genetic technology to heal the sick” (Parens 1995,
p. 151). But,
although there seems to be general support for somatic cell interventions and
germ-line therapy, germ-line enhancement remains highly contentious, and
perhaps even unpopular (see, e.g., President’s Commission 1982; President’s
Council 2003). One problem with enhancement in general, as opposed to therapy,
is that the scientific prospects are extremely daunting. Treatment of
Huntington’s chorea, for example, requires intervention at a single and known
genetic locus. And, in fact, many treatments would involve intervention at
single genetic loci. Enhancements, however, are far more difficult since hardly
any human trait or capability is influenced by one, or even a small number, of
genes.7 Not only does
the number of relevant genes frequently approach or exceed 100, the genes also
contribute unequally to the development of any given trait or capability (Clark
and Grunstein 2000, pp. 82-94). For an enhancement to work, not only must all,
or at least many, of the genetic loci be established, but their relative
contributions must be ascertained. This is a tremendous scientific
obstacle, and one that is not likely to be overcome in the near future.
Nevertheless, I am concerned with the moral, rather than the scientific,
problems of germ-line enhancement. Again, I assume that the scientific
limitations eventually will be overcome. Once these developments are realized,
what moral objections will remain? One argument offered to impugn the moral
legitimacy of genetic enhancement holds that such practice inevitably would
lead to unjust outcomes. Although different opinions exist as to what
constitutes this injustice, a plausible suggestion is that genetic enhancement
would be available only to a wealthy few and not to the vast majority of
society. These wealthy few could augment their own abilities, or those of their
progeny, through genetic enhancement and consequently widen the gap between the
rich and the poor and/or leave the “have-nots” unable to compete in an
integrated society. This injustice should be avoided; genetic enhancement,
which would lead to this injustice, is therefore morally problematic. In response to this argument, I propose that we
differentiate between genetic enhancement itself and its distribution.
Insofar as the preceding scenario is unjust, society could adopt a different
pattern of distribution. On the pure libertarian model, the rich presumably
could claim some entitlement to their resources and pursue genetic enhancement
that would lead to the above effects (Nozick 1974). But other models of
distribution exist. A Rawlsian, for example, could argue that the upper class
may make themselves better off – as measured
against a battery of primary goods that could include genetics –
only insofar as they improve the situation of the least well-off class (Rawls
1999). Perhaps the genetic enhancements of the few would create a larger social
product such that everyone would benefit. Or perhaps genetic enhancements for
the wealthy would only be permissible if the wealthy subsidized the genetic
enhancements of the nonwealthy. There are, of course, other distributive schemes
as well. One could hold lotteries for genetic enhancements; nobody would be
allowed to be genetically enhanced unless s/he won the lottery.8
Perhaps part of the tax revenue could fund the procedures
in the event that the lottery winner was unable to pay for the intervention. Regardless,
the obvious point is that genetic enhancement procedures alone will not lead to
unjust results; there would have to be an unjust distributive scheme to enable
the injustice to come about. If we can determine what constitutes a just
distributive scheme, then genetic enhancement, as a good or service, can be
distributed according to the principles of that scheme. So, in response to the
would-be critic, I would point out that it was never the justice of genetic
enhancement to which she was objecting, but rather to a specific distributive
scheme. Of course, it is the case that the distributive scheme currently in
place in the United States could, and perhaps would, lead to distributions of
genetic enhancement that some people consider unjust. But this could change; we
are many years ahead of the viability of genetic enhancement and have time to
prepare for its disbursement by making appropriate policy adjustments. There are, however, several plausible arguments
that could be made directly against genetic enhancement in general or germ-line
genetic enhancement more specifically. Some of these have received formulation
from Erik Parens (1995; 1998) who, I think, makes the arguments about as
compelling as they can be made. First, Parens considers whether genetic
enhancement will compromise important facts about human existence and
consequently detract from some of the aesthetic value of human experience. If,
for example, genetic engineering could be used to speed up aging and circumvent
the turmoil of adolescence or allay the pains of growing old, we might feel
compelled to use it for these purposes. But he thinks that these processes, or
our “fragility” more generally, have value and that there is at least a prima
facie problem with interfering with them. Clearly Parens holds a worldview that some would
deny: at least it is not intuitively obvious that there is necessarily anything
bad about accelerated aging, nor that there is necessarily anything good about
aging, death, or human fragility. Rather, many people might think that the use
of genetic enhancement to address these issues would be valuable. But other
people would agree with Parens. Nevertheless, this does not impugn genetic
enhancement in general, but rather only its use for those purposes that
society, through consensus, determines to be unpalatable. In the next section,
I offer a positive argument in favor of specific forms of genetic enhancement,
but here it is sufficient to observe that it need not be either permitted or
banned categorically; presumably, there are moral principles that can help to
determine which sorts of genetic intervention should be allowed. Even Parens
grants this; his point is only to establish that in some cases, there
are reasons to think that genetic enhancement is a bad idea. This is no reason,
however, to think that there are no cases in which genetic enhancement
would be valuable. Second,
Parens wonders whether genetic enhancement would detract from accomplishments,
making them less noteworthy or laudable. To use his example, we are less
impressed with an athlete who performs with steroids than another athlete who
turns in a comparable performance without the help of steroids. Similarly, one
can imagine two athletes, one with genetic enhancement and one without.
Presumably the accomplishments of the latter would be more impressive than the
comparable accomplishments of the former.9 The
former accomplished the same results with fewer “resources” and is therefore
more deserving of respect and awe. The question, however, is whether the
potential to undermine accomplishment is a legitimate reason to avoid genetic
enhancement. I do not think so. First, successive generations
always have more resources available to them than previous generations, and
this fact alone does not mean that the current generation is less deserving of
respect or awe than previous ones merely because its members have accomplished
what they have with more resources. Consider, for example, the Olympians of
classical Greece. Their athletic accomplishments, although tremendous at the
time, could be duplicated now by even the most average inter-collegiate
athlete. In the intervening millennia, we have amassed a huge knowledge
regarding nutrition, training techniques, sports medicine, and the like. This
corpus of knowledge allows athletes to train in much more sophisticated manners
and to perform in ways that would have been impossible long ago. Certainly we would not want to say that current
athletes accomplish less simply because they have advantages over their
ancient Greek counterparts. More logically, one might say that the standards
of evaluation have changed; the ancient Greeks were judged against certain
criteria (relative to what was possible and expected at the time), and current
athletes are judged against different criteria (relative to what is possible
and expected now). Excellence and accomplishment is measured relative to some
standard, and that standard is dynamic. The existence of comparative advantage
cannot preclude accomplishment, it can only affect the standard against which
accomplishment is measured. Although
I think that this argument alone shows that advantages do not impugn
accomplishment, the same point can be made more specifically with respect to
genetic – versus epistemic or social –
advantages. Obviously many current professional athletes have genetic
constitutions that give them tremendous advantages over the rest of us.
Nevertheless, this does not diminish the respect and awe that we afford them.
Certainly I do not watch Michael Jordan execute a 360° slam dunk and denigrate
the feat on the grounds that his genetics made it more likely that his 6’6”
frame could pull it off while my 6’0” frame had little hope. Obviously these
athletes train exceptionally hard but, even if most of us were to train with
comparable intensity, we would be unable to perform at their levels. The reason
is that many of their talents and capabilities are genetically endowed or
enabled and, as such, are beyond the reach of the average person. So I would
maintain that we respect athletes regardless of their genetic
superiority. If this is right, then genetic enhancement should not be morally
contentious merely by virtue of the fact that it would augment
performance. A plausible response to this line of reasoning
is to posit a morally relevant distinction between natural and “unnatural” (in
the sense of interventionistic) genetic advantages. The reason that one scoffs
at the sprinter on steroids is because he cheated by augmenting his
actual abilities by taking drugs. Michael Jordan on the other hand, merely
utilizes his natural endowments, and therefore is not deserving of any
disapprobation. If this is true, then it might be a reason to disallow
“unnatural” genetic enhancement. But I think that this conclusion misses an
important point: most of our talents and abilities are developed through
intervention. One certainly would not say that the accomplishments of a leading
moral philosopher are less impressive because he was trained at the best
institutions and under the best professors. Nor would one say of an athlete
that her accomplishments are less valuable because she spends so much time in
the gym and on the track (see Glover 1984, p. 45). The critic would have to hold that education and
exercise are morally legitimate interventions – or serve to
augment our abilities and talents in a morally legitimate way –
whereas genetic interventions are not. And what justification could be offered
for this nonhomogenous theory regarding the moral legitimacy of intervention?
That the genome is “special”? That education and exercise facilitate
developments allowed by one’s natural genetic endowments whereas genetic
enhancement changes those endowments and is therefore immoral? Certainly these
arguments would not be ridiculous, but they seem, at a minimum, to be ad hoc
and/ or undermotivated. Furthermore, they seem to be based on the premise
that “natural is good,” which is probably false. For example, many natural
phenomena, such as aging, disease, rape, and murder are not good. And,
to return to a continuing theme, even if one thought that some genetic
enhancement would undermine achievement, a conclusion I am inclined to deny, it
does not logically follow that all genetic enhancements would be ruled
out. One
final argument to consider against genetic enhancement is whether genetic
enhancement is problematic because its pursuit demonstrates a failure to accept
our place in nature. There is, I think, a sentiment that genetic enhancement is
nefarious on the grounds that it shows a discontent with what humans have been
given – whether through divine providence or through
natural selection – and that this sort of
dissatisfaction is unpalatable. On this line of reasoning, it is better to accept
our limitations and to be content with what we have than to try to change what
we are. Relatedly, we can ask what sort of people we would be if we tried to
alter ourselves. Perhaps trying to do so would be demonstrative of inhumility
or could be characterized as vicious in some other way.10
I
do not think that either of these suggestions can undermine the moral
legitimacy of genetic enhancement. With regard to the first, I simply do not
view the pursuit of genetic enhancement as an expression of dissatisfaction
with ourselves. Rather, I look at it as a chance to improve ourselves,
and improvement is certainly not morally dubious. We undergo all sorts of
processes that aim to improve the human experience: we pursue education; we
exercise; we do research. Why should genetic intervention be viewed any
differently? As I said above, I do not see any compelling moral distinction
that can be drawn. Would it be because, most fundamentally, our genomes are
what we “are,” and other pursuits do not affect this fundamental fact about
ourselves? Certainly I do not think that my genome is what constitutes me. I
view myself as a rational, autonomous agent capable of pursuing ends that I
find valuable. I also disagree that genetic enhancement would be vicious.
Genetic enhancement would aim, most fundamentally, at the improvement of
the human experience. What end could possibly be more noble than that? Genetic
enhancement surely could be applied to nefarious ends, and we always must be
vigilant against such abuses. But there is no reason to think that it would be
intrinsically evil, the only way that genetic intervention could manifest evil
would be through misapplication. The positive argument Thus
far, I have attempted to reject or undermine arguments that could be made
against genetic enhancement. But an important task remains: to establish a
strong argument in favor of it. Probably the most obvious way to argue for
genetic enhancement would be to proceed on utilitarian grounds. Look, one might
say, this practice has the potential to increase human capabilities that, when
exercised, will increase total aggregate happiness. If people can be made
smarter, for example, they could do more good with less effort and in less
time. Certainly any means to this end is, at least prima facie, morally
laudable. Of course, the critic would want to interject that there is
tremendous potential for disutility: there is scientific risk and uncertainty;
there is the problem of distribution; and so forth. But, as I already have
argued, these factors need not impugn the hedonic calculus. Nobody has argued
that genetic intervention should proceed when the risks outweigh the benefits.
Rather, we must wait, however long, until the balance sheet comes up positive,
and there is no reason to think that this will not happen eventually. And, if
certain distributive schemes will lead to strife and angst, then society must
adopt a differing distributive scheme – surely at
least one will mitigate these disutilities. Given these responses, I am quite confident
that genetic enhancement could be justified quite easily on utilitarian
grounds. Nevertheless, I think that one can do better
than a simple utilitarian argument. For one thing, many people are not
utilitarians, so they will be unlikely to be swayed by such a line of
reasoning. In addition, utilitarianism can be rather insensitive to the notions
of rights and of justice, both of which should be taken seriously. To this end,
one might want to consider future generations more directly, particularly as
pertains to one moral feature frequently evoked against germ-line genetic
enhancement: the fact that their consent is never given for the interventions
(see, e.g., Lappé 1991).11 Presumably
this concern derives from Kant’s moral philosophy, most specifically from the
second formulation of the categorical imperative and its edict to treat
individuals as ends and never merely as means or, more simply, to treat them in
ways to which they would rationally consent. Technically, of course, unborn
generations lack rational nature and therefore do not participate in humanity.
Therefore, I think, Kant would not object to genetic intervention on the
grounds that it fails to respect their (nonexistent) autonomy. Regardless, one
certainly may adopt a neo-Kantian line of reasoning wherein all humanity
(present and future) should be treated ways to which its members would
rationally consent, were they able to do so. Germ-line
genetic enhancement will, of course, affect all future generations –
although perhaps to a diminishing extent as the genetic contribution from a
single generation dissipates in future generations – as long as
its effects are not reversed or superceded by other interventions. So, to honor
the Kantian principle, genetic intervention would be morally permissible only
if every future generation would rationally consent to the genetic
alterations made in the germ-line. Can this criterion be satisfied? Absolutely.
More interestingly, however, the answer suggests which sorts of germ-line
enhancements are morally permissible and which are not. To see why some enhancements are morally
permissible, I invoke John Rawls’s notion of primary goods. Primary goods are
those things that every rational person should value, regardless of his
conception of the good: rights, liberties, opportunities, income and wealth,
health, intelligence, imagination, and the like (Rawls 1999, pp. 54-55). These
are the things that, ex hypothesi, everyone should want; it would be irrational
to turn them down when offered. Nobody could be better off with less health
or with fewer talents, for example, regardless of her life goals.12 To defend this claim, I must establish both
directions of the biconditional. First, consider whether germ-line genetic
enhancements are morally permissible if they augment primary goods. The
notion of moral permissibility I am concerned with here is the Kantian one, so
the central question is whether those affected by the genetic interventions
would rationally consent to the enhancements, were they able to do so. Since
primary goods are those that, by definition, any rational agent would want
regardless of his conception of the good, all rational agents would consent
to augmentation of their primary goods. Because rational consent is
sufficient for moral permissibility, on the Kantian model, one direction of the
biconditional is established. Perhaps
more interestingly, one even could argue that these enhancements would be required
by Kant. Kant speaks of a duty to develop one’s own talents; so, if genetic
enhancement would consist in the development of talents, Kant might consider
its pursuit to be a duty. Of course, in this case, it would not be self-development
of talents, which is the case Kant considered, but rather someone else
developing the talents of the (potential moral) agent. Nevertheless, I think
that failure to develop the talents of one’s progeny plausibly could yield a
contradiction in will, and, if so, genetic enhancements would be required by
Kant. But the prospect of a moral obligation to enhance is made even stronger
by Rawls (1999), who writes: “[I]n the original position . . . the parties want
to insure for their descendants the best genetic endowment. . . . The pursuit
of reasonable policies in this regard is something that earlier generations owe
to later ones.” Athough I am tempted by these lines of argumentation, I limit
my investigation here to the permissibility of genetic enhancement. To establish the second half of the
biconditional, I must show that genetic enhancements are morally permissible only
if they augment primary goods. In doing this, I also address a common and
legitimate concern against germ-line genetic enhancement, namely that it will
lead to the creation of “designer babies,” such that parents might try to
create, for example, the next Michael Jordan. Certainly such a use would be
unpalatable. However, many of the enhancements requisite for the creation of
Michael Jordanesque abilities do not satisfy my criterion of augmenting
primary goods. For example, many great basketball players are quite tall, and
prospective parents might contemplate editing their germ lines to increase the
potential height of their progeny. But height is not a primary good: rational
people easily could prefer not to be tall. Although height helps basketball
players, it can be inconvenient with respect to entering doorways,
physiological strains, and unwanted attention. Skin color, eye color, and even
sex would be off limits as well for genetic intervention since none of these
features constitute primary goods nor would necessarily lead to their
acquisition. Rational people could disagree as to which instantiations of these
characteristics would be most valuable. But why would these interventions be immoral?
Since interventions that augmented these non-primary goods would not be desired
by all rational agents, not all rational agents would consent to them. Because
rational consent is a necessary condition for moral permissibility, these
interventions would be immoral. Having now established the second direction of
the biconditional, I have shown that genetic enhancements are morally
permissible if and only if they augment primary goods, or create
abilities that which would lead to their augmentation. For
emphasis, I shall briefly reflect on the extent of interventions that would be
morally permissible on my view. Certainly any intervention that would make
progeny more healthy is morally permissible.13 But
I want to extend the argument beyond the permissibility of mere therapies (such
as curing Huntington’s chorea) and to authorize enhancements. Genetically
engineering greater resistance to disease obviously would be morally
permissible, even if the subject of the intervention already has a level of
disease resistance commensurate with that of a “normal” human. There are a
number of other physical enhancements that I think also would be morally
permissible insofar as they would augment talents or capabilities: for example,
improvements to eyesight, speed, strength, and the like. All of these
characteristics have genetic bases, although environment obviously plays a
substantial role as well, and I think that enhancements aimed at improving them
are morally permissible. Furthermore, there are a number of mental
characteristics that contribute both to our talents and to our overall
intelligence. If there ever were a way to enhance mental acuity, mathematical
and spatial reasoning, language faculties, creativity, musical abilities, and
the like, I would propose that we should do so.14 Obviously these enhancements are, for now,
scientifically impossible. And, to vanquish the specter of genetic determinism,
I willingly concede that genetics are only part of the picture. The talents,
capabilities, and physical traits of an adult cannot be read off of his or her
genome; we have free will to decide which of our potential talents we choose to
develop,15 and our
environments affect our physical traits as well as our opportunities to develop
talents and capabilities.16 Nevertheless,
genetics can confer at least the potential to develop in certain ways and some
of these potentialities are more valuable than others, both prudentially and
morally. In
conclusion, I think a strong argument can be made to support the moral
permissibility of certain types of genetic enhancement in general and germ-line
genetic enhancement in particular. Specifically, such interventions are morally
permissible if and only if they serve to augment Rawlsian primary goods, either
directly or by facilitating their acquisition. Acknowledgment This
paper originally was presented at Monash University’s Department of Philosophy
and Centre for Bioethics, and I thank its faculty and graduate students for
helpful comments and challenging criticisms. I also thank two anonymous
reviewers for their comments and suggestions. Notes 1. Beauchamp and Walters (2003, pp. 454–56) provide a good
introduction to genetic intervention. 2. For a an excellent and detailed discussion of the
therapy/enhancement distinction, see Buchanan et al. (2000, pp. 104–55). 3. Neel is particularly concerned with the dialogue over
germ-line therapy, although I think that he would not object to the extension
of his view to genetic enhancement as well. See also Walters and Palmer (1997,
Ch. 3) for another response to Neel. 4. More specifically, I am thinking here of the
surprise announcement of Dolly’s creation and the quick and uncritical
condemnation issued against cloning both by the public and by politicians. If
there had been a more open forum prior to this announcement, I suspect that the
reaction would have been quite different. Alternatively, the open forum might
have generated a critically informed indictment of cloning in which case there
might have been legitimate pressures to abandon research. 5. For an assessment of the existing scientific
possibilities, and consideration of some moral arguments, see Gordon (1999).
Gordon’s article is, however, a few years old and scientific possibilities are
growing rapidly. 6. Anderson also argues against the moral dangers of genetic
intervention. 7. The fact that (most) enhancements would require
intervention at more genetic loci than (most) therapies is even intuitively
obvious. Consider a car: there are a vast number of singular malfunctions that
could cripple a car’s normal functioning, yet there are very few, if any,
singular interventions that could enhance it. To substantially improve a car
most likely would require redesign of at least one entire system. Similarly,
with human genetics, a vast number of malfunctions could substantially lower
the welfare of an individual (and therefore open the door for genetic therapy),
yet there are few singular interventions that could substantially enhance an
individual’s welfare – to use
the vernacular of the biologist, most traits are highly multigenic and
quantitative. 8. This idea has been proposed by Maxwell Mehlman and Jeffrey
Botkin (1998) and further developed in Mehlman (2000). 9. Although I am concerned particularly with whether genetic
enhancement can be said to undermine accomplishment, Juengst and Walters (2003)
offer a related discussion as to whether genetic enhancement constitutes a form
of cheating. They are inclined to think that it does not, but admit that it
might force institutions – be
they athletic, educational, and the like –
to reconceive their standards of evaluation, to redesign the “game,” or else to
prohibit certain enhancements. 10. In an article that I very much like, Thomas Hill (1983)
argues for environmental consciousness on the grounds that we would not be good
people if we did not care about our environment. If, for example, we decimate
forests to build strip malls, we display an arrogance and an attitude that is
morally blameworthy. Although I agree with his argument as pertains to the
environment, I do not think that it can be extended to impugn genetic
enhancement. 11. Juengst and Walters (2003) offer a good discussion of
other rights-related issues for germ-line intervention. 12.
Someone might object to the categorical value of some primary goods, such as
intelligence or talents, on the grounds that their possession brings about
higher expectations and greater pressures. Although such an objection risks
regression to Mill’s swine, one, nevertheless, could grant that, insofar as
expectations and pressures are undesirable, the goods that would lead to them
are not primary since some rational agent would disapprove of them. Even though
this concession might undermine certain proposed goods, such as intelligence,
it is unlikely to impugn others, such as health. But, more fundamentally, I am
tremendously skeptical that any of Rawls’s proposed primary goods could
make someone worse off. Although one might not like the pressures associated
with increased intelligence, for example, the intelligence itself is
certainly desirable. 13. Walters and Palmer (1997) also argue that interventions
aimed at health are morally permissible. However, I think additional
enhancements are legitimate as well. 14. Although some people might be reluctant to accept the
relationship between genetics and mental abilities, such a relationship most
certainly exists. (As importantly, there is no moral cost to acknowledging such
a relationship, since doing so has no normative implications.) For discussion
of the genetic basis of cognitive ability, see Clark and Grunstein (2000, pp.
221-238); Bouchard (1998); Bouchard and McGue (1981); Plomin et al. (1994); and
Daniels et al. (1998). 15. For discussion of the relationship between genetics and
free will, see Clark and Grunstein (2000, pp. 265-70); Pinker (2002, pp.
174-85); Ridley (1999, pp. 301-13). 16.
For discussion of the interactions between genes and the environment, see Clark
and Grunstein (2000, pp. 218-20, 253-65) and Ridley (1999, pp. 65-75). References Anderson, W. French. 1990. Genetics and Human
Malleability. Hastings Center Report 20 (1): 21–24. Beauchamp, Tom L., and Walters, LeRoy, eds.
2003. Contemporary Issues in Bioethics. 6th
ed. Belmont, CA: Wadsworth. Bouchard, Thomas. 1998. Genetic and
Environmental Influence on Adult Intelligence and Special Mental Ability. Human
Biology 70: 281-96. ———, and McGue, Matthew. 1981. Familial Studies
of Intelligence. Science 212: 1055–59. Buchanan, Allen; Brock, Dan; Daniels, Norman; and Wikler,
Dan. 2000. From
Change to Choice: Genetics and Justice. New York: Cambridge
University Press. Clark, William R., and Grunstein, Michael. 2000.
Are We Hardwired?: The Role of Genes in Human Behavior. Oxford: Oxford
University Press. Daniels, J.; McGuffin, P.; Owen, M.; and Plomin,
R. 1998. Molecular Genetic Studies of Cognitive Ability. Human Biology
70: 281-96. Daniels, Norman. 1992. Growth Hormone Therapy
for Short Stature: Can We Support the Treatment/Enhancement Distinction? Growth:
Genetics & Hormones 8 (Supplement 1): 46-48. Danks, David. 1994. Germ-Line Gene Therapy: No
Place in Treatment of Genetic Disease. Human Gene Therapy 5: 151-52. Glover, Jonathan. 1984. What Sort of People
Should There Be? London: Penguin Books. Gordon, John W. 1999. Genetic Enhancement in
Humans. Science 283: 2023-24. Hill, Thomas J. 1983. Ideals of Human Excellence
and Preserving Natural Environments. Environmental Ethics 5: 211-24. Juengst, Eric. 1997. Can Enhancement Be
Distinguished from Prevention in Genetic Medicine? Journal of Medicine and
Philosophy 22: 125-42. ———; and Walters, LeRoy. 2003. Ethical Issues in
Human Gene Transfer Research. In Ethical Issues in Modern Medicine, 6th
ed., eds. Bonnie Steinbock, John D. Arras, and Alex John
London, pp. 571-84. New York: McGraw-Hill. Lappé, Marc. 1991. Ethical Issues in
Manipulating the Human Germ Line. Journal of Medicine and Philosophy 16:
621-39. Mehlman, Maxwell J. 2000. “The Law of Above
Averages: Leveling the New Genetic Playing Field. Iowa Law Review 85:
517-93. ———, and Botkin, Jeffrey. 1998. Access to the
Genome: The Challenge to Equality. Washington, DC: Georgetown University
Press. Neel, James. 1993. Germ-Line Therapy: Another
View. Human Gene Therapy 4: 127-28. Nozick, Robert. 1974. Anarchy, State, and
Utopia. New York: Basic Books. Parens, Erik. 1995. The Goodness of Fragility:
On the Prospect of Genetic Technologies Aimed at the Enhancement of Human
Capacities. Kennedy Institute of Ethics Journal 5: 141-53. ———, ed. 1998. Enhancing Human Traits:
Ethical and Social Implications. Washington, DC: Georgetown University
Press. Pinker, Steven. 2002. The Blank Slate: The
Modern Denial of Human Nature. New York: Viking. Plomin, R.; McClearn, G. E.; Smith, D.; et al.
1994. DNA Markers Associated with High versus Low IQ. Behavior Genetics
24: 107-18. President’s Commission for the Study of Ethical
Problems in Medicine and Biomedical and Behavioral Research. 1982. Splicing
Life. Washington, DC: U.S. Government Printing Office. President’s Council on Bioethics. 2003. Beyond
Therapy. Washington, DC. Available at www.bioethics.gov. Accessed
January 2005. Rawls, John. 1999. A Theory of Justice.
Rev. ed. Cambridge, MA: Harvard University Press. Ridley, Matt. 1999. Genome: The Autobiography
of a Species in 23 Chapters. New York: Perennial. Walters, LeRoy, and Palmer, Julie. 1997. The
Ethics of Human Gene Therapy. New York: Oxford University Press. |